[1]张洪  张新春  杨兴利  张建成  李相方.长6 致密砂岩油藏储层孔隙结构特征及孔缝组合模式[J].石油钻采工艺,2018,40(4):468-476.[doi:10.13639/j.odpt.2018.04.012]
 ZHANG Hong,ZHANG Xinchun,YANG Xingli,et al.Pore structural characteristics and pore-fracture combination modes of reservoirs in Chang 6 tight sandstone oil reservoirs[J].Oil Drilling & Production Technology,2018,40(4):468-476.[doi:10.13639/j.odpt.2018.04.012]
点击复制

长6 致密砂岩油藏储层孔隙结构特征及孔缝组合模式
分享到:

《石油钻采工艺》[ISSN:1000-7393/CN:13-1072/TE]

卷:
40卷
期数:
2018年4期
页码:
468-476
栏目:
油气开采
出版日期:
2018-07-20

文章信息/Info

Title:
Pore structural characteristics and pore-fracture combination modes of reservoirs in Chang 6 tight sandstone oil reservoirs
文章编号:
1000 – 7393( 2018 )04 – 0468– 09
作者:
张洪1  张新春2  杨兴利2  张建成2  李相方1
1. 中国石油大学石油工程学院\ 石油工程教育部重点实验室; 2. 延长油矿宝塔采油厂
Author(s):
ZHANG Hong1 ZHANG Xinchun2 YANG Xingli2 ZHANG Jiancheng2 LI Xiangfang1
1. College of Petroleum Engineering, China University of Petroleum/Key Laboratory of Petroleum Engineering Education Ministry, Beijing 102249, China; 2. Baota Oil Production Plant, Yanchang Oilfield, Yan’an 610600, Shaanxi, China
关键词:
长6 储层致密砂岩微观孔隙结构孔缝组合模式产能
Keywords:
Chang 6 reservoir tight sandstone micro-pore structure pore-fracture combination mode productivity
分类号:
P618.13
DOI:
10.13639/j.odpt.2018.04.012
文献标志码:
A
摘要:
为了研究致密油孔隙结构特征及与石油渗流关系,利用F200 场扫描电镜对鄂尔多斯甘谷驿油田致密油样品进行微观分析,建立该样品储层的微观孔隙裂缝体系,进一步通过压汞实验了解孔喉分布及不同孔径孔、缝对渗透率的贡献率,结合样品电镜扫描观察结果推断孔隙、裂缝储集渗流油气有效性。研究结果表明,该区致密油储层主要孔隙有原生孔、粒内溶孔、粒间(基质)溶蚀孔及晶间孔4 种类型,油气主要储存在粒内、粒间溶孔中,原生粒间孔仅为次要储油空间,大量纳米级孔隙成为储油主体。而裂隙主要为微裂缝,由方解石解理缝、溶蚀缝及成岩收缩缝构成,其中方解石解理缝和溶蚀缝构成渗流运移主要通道, 微裂缝与人工裂缝结合形成裂缝网络。微孔(小于2 nm)对油气储存有效,对油气渗流则不起作用。因此该区致密油储油渗流孔隙结构总结为“纳米溶孔储油,微裂缝人工压裂缝渗流”。据此将不同孔缝组合划分为3 种模式:溶蚀孔缝组合模式、方解石解理缝+ 溶蚀孔组合模式、裂缝或孔隙单独存在模式。其中溶蚀孔缝组合模式和方解石解理缝+ 溶蚀孔组合模式流体渗流阻力小,在甜点区选择时应重点关注。
Abstract:
In order to research the relationships between the pore structural characteristics and the oil flowing in tight oil reservoirs, F200 field scanning electron microscope (SEM) was used to microscopically analyze the tight oil samples of Ganguyi Oilfield in the Ordos Basin, and the microscopic pore-fracture system of the sample reservoir was established. Then, the distribution of pore throats and the contribution rate of pores and fractures of different sizes to the permeability were analyzed by conducting mercury injection experiments. Finally, combined with the SEM results of the samples, the effectiveness of pores and fractures to hydrocarbon storage and flow was inferred. It is indicated that the pores in the tight oil reservoirs in this area are mainly divided into four types, i.e., primary pore, intragranular dissolved pore, intergranular (matrix) dissolved pore and intercrystalline pore. Intragranular and intergranular dissolved pores are the main reservoir space of oil and gas, primary intergranular pore is merely the secondary reservoir space of oil, and a great number of nano-scale pores are the main reservoir space of oil. Micro-fractures are dominant and they are mainly composed of calcite cleavage fissure, dissolved fracture and diagenetic contraction fracture, among which the former two are the main pathway of flow and migration. Micro-fractures and hydraulic fractures constitute fracture networks. Micro-pores (<2 nm) are effective for oil and gas storage, but ineffective for oil and gas flowing. Thus, it is concluded that the oil storage and flowing pores of tight oil reservoirs in this area are in the mode of “nano-scale dissolved pores acting as oil reservoir space, and micro-fractures and hydraulic fractures acting as oil flowing pathway”. Accordingly, pore-fracture combinations are divided into three modes, i.e., dissolved pore-fracture combination mode, calcite cleavage fissure+dissolved pore combination mode and independent fracture or pore mode. The first two combination modes have small resistance to fluid flow and they shall be focused on when sweet spots are selected.

相似文献/References:

[1]刘乃震 柳 明.苏里格气田苏53 区块工厂化作业实践[J].石油钻采工艺,2014,36(6):016.[doi:10.13639/j.odpt.2014.06.004]
 LIU Naizhen,LIU Ming.Factory operation practice in Su 53 Block in Sulige Gasfield[J].Oil Drilling & Production Technology,2014,36(4):016.[doi:10.13639/j.odpt.2014.06.004]
[2]蒋官澄  张 弘  吴晓波  李颖颖  张志行.致密砂岩气藏润湿性对液相圈闭损害的影响[J].石油钻采工艺,2014,36(6):050.[doi:10.13639/j.odpt.2014.06.013]
 JIANG Guancheng,ZHANG Hong,WU Xiaobo,et al.Effect of tight sandstone gas reservoir wettability on liquid traps damage[J].Oil Drilling & Production Technology,2014,36(4):050.[doi:10.13639/j.odpt.2014.06.013]
[3]葛  磊.樊家地区致密砂岩油气藏钻井关键技术[J].石油钻采工艺,2014,36(3):027.[doi:10.13639/j.odpt.2014.03.007]
 GE Lei.Key technology on drilling oil and gas reservoirs of tight sandstone in Fanjia area[J].Oil Drilling & Production Technology,2014,36(4):027.[doi:10.13639/j.odpt.2014.03.007]
[4]于志纲 张 军 彭商平 杨 飞.可降解甲酸盐钻井液的研究与应用[J].石油钻采工艺,2010,32(6):053.
 YU Zhigang,ZHANG Jun,PENG Shangping,et al.Research and application of decomposable formate base drilling fluid[J].Oil Drilling & Production Technology,2010,32(4):053.
[5]游利军,康毅力,陈一健,等.应用屏蔽暂堵技术提高致密砂岩气层测井识别能力[J].石油钻采工艺,2007,29(1):113.[doi:10.3969/j.issn.1000-7393.2007.01.035]
 YOU Li-jun,KANG Yi-li,CHEN Yi-jian,et al.Application of temporary and shielding plugging technology to improve well logging responses for tight sandstone gas reservoir[J].Oil Drilling & Production Technology,2007,29(4):113.[doi:10.3969/j.issn.1000-7393.2007.01.035]
[6]叶亮  邹雨时  赵倩云  李四海  丁勇  马新星.致密砂岩储层CO2 压裂裂缝扩展实验研究[J].石油钻采工艺,2018,40(3):361.[doi:10.13639/j.odpt.2018.03.015]
 YE Liang,ZOU Yushi,et al.Experiment research on the CO2 fracturing fracture propagation laws of tight sandstone[J].Oil Drilling & Production Technology,2018,40(4):361.[doi:10.13639/j.odpt.2018.03.015]

更新日期/Last Update: 2018-11-20