[1]李泽  李皋  杨旭  王希勇  刘林  戴成.流固耦合作用下页岩地层液相侵入机理[J].石油钻采工艺,2018,40(6):720-725.[doi:10.13639/j.odpt.2018.06.009]
 LI Ze,LI Gao,YANG Xu,et al.Study on the invasion mechanism of liquid phase into shale formation under the effect of fluid-solid coupling[J].Oil Drilling & Production Technology,2018,40(6):720-725.[doi:10.13639/j.odpt.2018.06.009]
点击复制

流固耦合作用下页岩地层液相侵入机理
分享到:

《石油钻采工艺》[ISSN:1000-7393/CN:13-1072/TE]

卷:
40卷
期数:
2018年6期
页码:
720-725
栏目:
钻井完井
出版日期:
2018-11-20

文章信息/Info

Title:
Study on the invasion mechanism of liquid phase into shale formation under the effect of fluid-solid coupling
文章编号:
1000 – 7393( 2018 )06 – 0720 – 06
作者:
李泽1  李皋1  杨旭1  王希勇2  刘林1  戴成1
1. 西南石油大学·油气藏地质及开发工程国家重点实验室;2. 中国石油化工股份有限公司西南油气分公司
Author(s):
LI Ze1 LI Gao1 YANG Xu1 WANG Xiyong2 LIU Lin1 DAI Cheng1
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China; 2. SINOPEC Southwest Oil & Gas Branch Company, Deyang 618000, Sichuan, China
关键词:
页岩复杂孔隙介质流固耦合液相侵入机理
Keywords:
shale complex porous medium fluid-solid coupling liquid invasion mechanism
分类号:
TE21
DOI:
10.13639/j.odpt.2018.06.009
文献标志码:
A
摘要:
页岩地层液相侵入将会导致井壁失稳等井下事故的发生,但目前关于页岩地层液相侵入及流固耦合现象研究尚不深入。建立了流固耦合作用下的页岩地层液相侵入数学模型,并对模型求解结果进行了验证和分析。结果表明:侵入初期,液相在人工裂缝内的渗流占据主导作用,但随着侵入时间的延长,复杂孔隙介质内的压力差将逐渐减弱,基质及裂缝系统内的渗流压力将趋于一致;流固耦合作用在液相侵入过程中影响显著,裂缝系统及基质的渗透率在流固耦合作用下增大,同时间段内耦合工况下的渗流压力大于非耦合工况下的渗流压力。将基质、天然裂缝、人工裂缝视为3 个不同压力系统基础上得到的研究结果对科学认识流固耦合作用下的页岩地层液相侵入机理具有一定的指导意义。
Abstract:
The invasion of liquid phase into shale formation can lead to downhole accidents, e.g. borehole instability. So far, however, the invasion of liquid phase into shale formation and the fluid-solid coupling phenomenon have not been studied deeply. The mathematical model for the invasion of liquid phase into shale formation under the effect of fluid-solid coupling was established. In addition, its solution results were verified and analyzed. It is shown that in the early stage of liquid invasion, its seepage in artificial fractures is dominant. With the extension of invasion time, however, the pressure difference in complex porous medium decreases gradually, and the seepage pressure in the matrix tends to be consistent with that in the fracture system. The effect of fluid-solid coupling in the process of liquid invasion is significant, and the permeability of fracture system and matrix increases under the effect of fluid-solid coupling. And in the same time interval, the seepage pressure under the working condition of coupling is higher than that of non-coupling. In conclusion, the research results which are obtained by taking matrix, natural fracture and artificial fracture as three different pressure systems play a guiding role for understanding the invasion mechanisms of liquid phase into shale formation under the effect of fluid-solid coupling scientifically.

相似文献/References:

[1]赵志红  郭建春  杨经栋  王杏尊  鲍文辉.页岩储层微观破裂特征实验研究[J].石油钻采工艺,2014,36(3):068.[doi:10.13639/j.odpt.2014.03.017]
 ZHAO Zhihong,GUO Jianchun,YANG Jingdong,et al.Experimental study of microscopic fracture characteristics of shale reservoirs[J].Oil Drilling & Production Technology,2014,36(6):068.[doi:10.13639/j.odpt.2014.03.017]
[2]王正良,佘跃惠,李淑廉,等.双南等地区防塌钻井液体系的研究与应用[J].石油钻采工艺,1998,20(3):041.[doi:10.3969/j.issn.1000-7393.1998.03.009]
 Wang Zhengliang,She Yaohui,Li Shulian,et al.RESEARCH AND APPLICATION OF ANTI-SLOUGHING DRILLING FLUID SYSTEM IN SHUANGNAN AREAS[J].Oil Drilling & Production Technology,1998,20(6):041.[doi:10.3969/j.issn.1000-7393.1998.03.009]
[3]罗健生,鄢捷年.页岩水化对其力学性质和井壁稳定性的影响[J].石油钻采工艺,1999,21(2):007.[doi:10.3969/j.issn.1000-7393.1999.02.002]
 Luo Jiansheng,Yan Jienian.MPACT OF SHALE HYDRATION ON ITS MECHANICAL PROPERTY AND BOREHOLE WALL STABILITY[J].Oil Drilling & Production Technology,1999,21(6):007.[doi:10.3969/j.issn.1000-7393.1999.02.002]
[4]何家欢  李农  王兰生  张鉴  杜坚  靳涛.页岩含气量自动测定技术[J].石油钻采工艺,2017,39(6):766.[doi:10.13639/j.odpt.2017.06.019]
 HE Jiahuan,LI Nong,WANG Lansheng,et al.Automatic shale gas content measurement technology[J].Oil Drilling & Production Technology,2017,39(6):766.[doi:10.13639/j.odpt.2017.06.019]

更新日期/Last Update: 2019-04-10