[1]张立侠  郭春秋.基于BWRS 状态方程的天然气偏差因子计算方法[J].石油钻采工艺,2018,40(6):775-781.[doi:10.13639/j.odpt.2018.06.016]
 ZHANG Lixia,GUO Chunqiu.A calculation method for Z-factor of natural gas based on BWRS equation[J].Oil Drilling & Production Technology,2018,40(6):775-781.[doi:10.13639/j.odpt.2018.06.016]
点击复制

基于BWRS 状态方程的天然气偏差因子计算方法
分享到:

《石油钻采工艺》[ISSN:1000-7393/CN:13-1072/TE]

卷:
40卷
期数:
2018年6期
页码:
775-781
栏目:
油气开采
出版日期:
2018-11-20

文章信息/Info

Title:
A calculation method for Z-factor of natural gas based on BWRS equation
文章编号:
1000 – 7393( 2018 )06 – 0775 – 07
作者:
张立侠  郭春秋
中国石油勘探开发研究院
Author(s):
ZHANG Lixia GUO Chunqiu
PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
关键词:
天然气偏差因子状态方程经验关系迭代
Keywords:
natural gas Z-factor state equation empirical relationship iteration
分类号:
TE37
DOI:
10.13639/j.odpt.2018.06.016
文献标志码:
A
摘要:
天然气偏差因子是油气藏工程计算中的必要参数,在油气勘探开发的诸多工程应用中起着重要作用。基于Starling 修正的Benedict-Webb-Rubin 状态方程(BWRS 方程)和DAK 方法,对BWRS 方程中的指数项进行修正,利用非线性回归分析, 提出了一种新的偏差因子计算方法,利用偏差因子标准数据对DAK、胡建国修正的DAK 方法及该新方法进行了对比。误差分析结果表明:对于一般的温度压力范围(1.05≤Tpr≤3.0 & 0.2≤ppr≤15)和相对高压(1.4≤Tpr≤2.8 & 15≤ppr≤30)的情形(共7 148 组天然气偏差因子数据),新方法的平均绝对误差分别为0.382% 和0.205%,比DAK 方法和胡建国修正的DAK 方法的计算精度都要高。相对而言,DAK 方法在“1.1≤Tpr≤3.0 & 0.2≤ppr≤15”范围内的计算精度较高,胡建国修正的DAK 方法只能用于相对高压(1.4≤Tpr≤2.8 & 15≤ppr≤30)的情形,而新方法适用范围更大(1.05 < Tpr≤3.0 & 0.2≤ppr≤15 以及1.4≤Tpr≤2.8 & 15≤ppr≤30)且计算效果更好。
Abstract:
Z-factor of natural gas is a necessary parameter in the calculation of reservoir engineering, and plays an important role in many engineering applications of oil and gas exploration and development. The exponential term in BWRS equation was modified based on the BWR equation modified by Starling and the DAK method. Then, a new Z-factor calculation method was developed by means of non-linear regression analysis. Finally, the DAK method, the DAK method modified by HU Jianguo and the new method were compared by using the standard data of Z-factor. The error analysis results indicate that in the situations with general temperature and pressure range (1.05≤Tpr≤3.0 & 0.2≤ppr≤15) and higher pressure (1.4≤Tpr≤2.8 & 15≤ppr≤30) (7 148 Z-factors of natural gas), the average absolute error of the new method is 0.382% and 0.205%, respectively, which are higher than the calculation accuracy of the DAK method and the DAK method modified by HU Jianguo. Comparatively, DAK method has higher calculation accuracy when pressure and temperature is in range of 1.1≤Tpr≤3.0 & 0.2≤ppr≤15, the DAK method modified by HU Jianguo is only applicable to higher pressure (1.4≤Tpr≤2.8 & 15≤ppr≤30), and the new method has wider applicable range (1.05<Tpr≤3.0 & 0.2≤ppr≤15以及1.4≤Tpr≤2.8 & 15≤ppr≤30) with higher calculation accuracy.

相似文献/References:

[1]吴志均 陈 刚 郎淑敏 龙 滨 王 勇 李 伟.天然气钻井井控技术的发展[J].石油钻采工艺,2010,32(5):056.
 WU Zhijun,CHEN Gang,LANG Shumin,et al.The development of the well control technique in natural gas drilling[J].Oil Drilling & Production Technology,2010,32(6):056.
[2]郭小哲 王福升 赵志辉 胡广文 王金礼.准噶尔盆地气井天然气水合物生成实验研究与分析[J].石油钻采工艺,2013,35(5):118.
 GUO Xiaozhe,WANG Fusheng,ZHAO Zhihui,et al.Experimental study and analysis on hydrate generation for gas wells in Junggar Basin [J].Oil Drilling & Production Technology,2013,35(6):118.
[3]廉火升,冷仁春,高朋林.用单流阀回收套管气探讨[J].石油钻采工艺,1994,16(6):076.[doi:10.3969/j.issn.1000-7393.1994.06.015]
 Lian Huosheng,Leng Renchun,Gao Penglin.DISCUSSION ON THE METHOD FOR RECOVERING CASING GAS USING A CHECK VALVE[J].Oil Drilling & Production Technology,1994,16(6):076.[doi:10.3969/j.issn.1000-7393.1994.06.015]
[4]魏周胜,王文斌,陈小荣,等.超低密度早强水泥浆在天然气井固井中的应用[J].石油钻采工艺,2002,24(6):015.[doi:10.3969/j.issn.1000-7393.2002.06.006]
 Wei Zhousheng,Wang Wenbin,Chen Xiaorong,et al.APPLICATION OF ULTRA-LOW DENSITY CEMENT SLURRY OF EARLY STRENGTH PROPERTY IN NATURAL GAS WELL CEMENTING[J].Oil Drilling & Production Technology,2002,24(6):015.[doi:10.3969/j.issn.1000-7393.2002.06.006]
[5]赵业荣,刘硕琼,雷桐.长庆苏里格气田天然气欠平衡钻井实践[J].石油钻采工艺,2004,26(4):013.[doi:10.3969/j.issn.1000-7393.2004.04.005]
 Zhao Yerong,Liu Shuoqiong,Lei Tong.UNDER BALANCED DRILLING PRACTICES IN SULIGE GAS FIELD OF CHANGQING[J].Oil Drilling & Production Technology,2004,26(6):013.[doi:10.3969/j.issn.1000-7393.2004.04.005]
[6]高贵民,朱世民,刘东,等.苏4-14井借气气举排水采气技术[J].石油钻采工艺,2006,28(4):044.[doi:10.3969/j.issn.1000-7393.2006.04.014]
 GAO Gui-min,ZHU Shi-min,LIU Dong,et al.Gas-lift dewatering technology of Su 4-14 by using gas from adjacent wells[J].Oil Drilling & Production Technology,2006,28(6):044.[doi:10.3969/j.issn.1000-7393.2006.04.014]
[7]蒋祖军.国内第一口TAML五级双分支井完井技术[J].石油钻采工艺,2004,26(1):005.[doi:10.3969/j.issn.1000-7393.2004.01.002]
 Jiang Zujun.COMPLETION TECHNOLOGY OF THE FIRST TAML5 DOUBLE LATERAL WELL AT HOME[J].Oil Drilling & Production Technology,2004,26(6):005.[doi:10.3969/j.issn.1000-7393.2004.01.002]
[8]赵业荣,丁世宣,袁孟嘉,等.陕242井天然气钻井实践[J].石油钻采工艺,2001,23(2):013.[doi:10.3969/j.issn.1000-7393.2001.02.004]
 Zhao Yerong,Ding Shixuan,et al.NATURAL GAS DRILLING PRACTICE IN WELL SHAN-242[J].Oil Drilling & Production Technology,2001,23(6):013.[doi:10.3969/j.issn.1000-7393.2001.02.004]
[9]李相方,庄湘琦,刚涛,等.天然气偏差系数模型综合评价与选用[J].石油钻采工艺,2001,23(2):042.[doi:10.3969/j.issn.1000-7393.2001.02.015]
 Li Xiangfang,Zhuang Xiangqi,et al.COMPREHENSIVE APPRAISAL AND SELECTION FOR GAS COMPRESSIBILITY FACTOR CALCULATING MODEL[J].Oil Drilling & Production Technology,2001,23(6):042.[doi:10.3969/j.issn.1000-7393.2001.02.015]
[10]邹德永,王瑞和.气井油管中水合物的形成及预测[J].石油钻采工艺,2001,23(6):046.[doi:10.3969/j.issn.1000-7393.2001.06.014]
 Zou Deyong,Wang Ruihe.HYDRATE FORMATION AND PREDICTION IN GAS WELL TUBE[J].Oil Drilling & Production Technology,2001,23(6):046.[doi:10.3969/j.issn.1000-7393.2001.06.014]

更新日期/Last Update: 2019-04-10